Improved l1-SPIRiT using 3D walsh transform-based sparsity basis.

نویسندگان

  • Zhen Feng
  • Feng Liu
  • Mingfeng Jiang
  • Stuart Crozier
  • He Guo
  • Yuxin Wang
چکیده

l1-SPIRiT is a fast magnetic resonance imaging (MRI) method which combines parallel imaging (PI) with compressed sensing (CS) by performing a joint l1-norm and l2-norm optimization procedure. The original l1-SPIRiT method uses two-dimensional (2D) Wavelet transform to exploit the intra-coil data redundancies and a joint sparsity model to exploit the inter-coil data redundancies. In this work, we propose to stack all the coil images into a three-dimensional (3D) matrix, and then a novel 3D Walsh transform-based sparsity basis is applied to simultaneously reduce the intra-coil and inter-coil data redundancies. Both the 2D Wavelet transform-based and the proposed 3D Walsh transform-based sparsity bases were investigated in the l1-SPIRiT method. The experimental results show that the proposed 3D Walsh transform-based l1-SPIRiT method outperformed the original l1-SPIRiT in terms of image quality and computational efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented Lagrangian with Variable Splitting for Faster Non-Cartesian 𝕃1-SPIRiT MR Image Reconstruction

SPIRiT (iterative self-consistent parallel imaging reconstruction), and its sparsity-regularized variant L1-SPIRiT, are compatible with both Cartesian and non-Cartesian magnetic resonance imaging sampling trajectories. However, the non-Cartesian framework is more expensive computationally, involving a nonuniform Fourier transform with a nontrivial Gram matrix. We propose a novel implementation ...

متن کامل

3D Inversion of Magnetic Data through Wavelet based Regularization Method

This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp ...

متن کامل

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Energy-Efficient ECG Acquisition in Body Sensor Networks based on Compressive Sensing

This paper presents a novel ECG signal measuring approach using compressive sensing method. The signal representing sparsity in any orthogonal basis can be well recovered using minimize L1 norm optimization, while satisfying the RIP condition for the measurement matrix  and orthogonal basis . First, based on this theorem, an analysis for evaluating the sparsity of ECG signal in orthogonal bas...

متن کامل

Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit

Abstract—Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no info...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance imaging

دوره 32 7  شماره 

صفحات  -

تاریخ انتشار 2014